I informationsteori er entropi (også informationsentropi eller Shannon-entropi) en måde at betegne og give værdi til evolution og vækst i viden. Især KI-applikationer gør brug af entropi til at læse informationer. De sammenligner simpelthen systemets dele og vælger det stykke data med mindst (~0) entropi.
Entropien er givet ved en sum over alle mulige tilstande:
Entropien opnås være at tage gennemsnittet af informationsmængden for hvert udfald:
For et system med forskellige udfald er entropien altså den gennemsnitlige informationsmængde, der opnås ved en måling. Jo højere entropien er, jo større usikkerhed er der omkring udfaldet.[2]